Tufted cells are better at recognizing smells than mitral cells, researchers say
Since their discovery over 100 years ago, neurons in the brain's olfactory bulb called tufted cells have been difficult to study. The close proximity between tufted cells and other neurons called mitral cells, restricted the ability to dissect each individual neuron's activity. By leveraging fluorescent genetic markers and new optical imaging technologies, Cold Spring Harbor Laboratory (CSHL) neuroscientists were able to compare the neurons' activity.
CSHL Associate Professor Florin Albeanu and Assistant Professor Arkarup Banerjee discovered tufted cells are better at recognizing smells than mitral cells. They've found tufted cells are essential to one of two parallel neural circuit loops that help the brain process different odor features. The findings help explain how the brain takes in sensory information that influences behavior and emotions.
The researchers exposed mice to various odors, from fresh mint to sweet bananas, at different concentrations. They simultaneously tracked the neural activity of the two cell types and found tufted cells outperformed mitral cells. They were faster and better at distinguishing smells. They also captured a wider range of concentrations. While this illuminated a new role for tufted cells, it also led to a new unanswered question.
If tufted cells are actually better at recognizing odors, what then, is the function of mitral cells?"
Florin Albeanu, CSHL Associate Professor
Genetics & Genomics eBook
Compilation of the top interviews, articles, and news in the last year.
Download a copy today
Albeanu and Banerjee think mitral cells enhance important smells. They are part of a neural feedback loop that may help an animal prioritize, for example, the smell of food or a predator. In contrast, the tufted cells are part of a second feedback loop that helps process smell intensity and identity. This can guide animals locating odors in the environment. Banerjee explains:
"If you can't tell whether it's high [intensity] versus low [intensity], then you can't track an odor. There's no way to know that you're actually getting closer to the odor source if you can't tell the difference."
The two neural circuit loops offer novel explanations for how the brain processes sensory information. Going forward, the new genetic and optical imaging tools used by the CSHL team, that include postdoc Honggoo Chae and graduate student Marie Dussauze, can uncover more undervalued neurons involved in sensory processing.
Cold Spring Harbor Laboratory
Chae, H., et al. (2022) Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron. doi.org/10.1016/j.neuron.2022.09.005.
Posted in: Cell Biology
Tags: Brain, Cell, Cold, Food, Genetic, Imaging, Laboratory, Neuron, Neurons, Optical Imaging, Research, Singing
Source: Read Full Article